翻訳と辞書 |
unconditional convergence : ウィキペディア英語版 | unconditional convergence Unconditional convergence is a topological property (convergence) related to an algebraical object (sum). It is an extension of the notion of convergence for series of countably many elements to series of arbitrarily many. It has been mostly studied in Banach spaces. == Definition == Let be a topological vector space. Let be an index set and for all . The series is called unconditionally convergent to , if * the indexing set is countable and * for every permutation of the relation holds:
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「unconditional convergence」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|